

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://wiz.io

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Kubernetes
Security

Wiz Special Edition

by Steve Kaelble

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Kubernetes Security For Dummies®, Wiz Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not
be used without written permission. Wiz and the Wiz logo are trademarks or registered
trademarks of Wiz, Inc. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department
in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub.
For information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN 978-1-394-24587-1 (pbk); ISBN 978-1-394-24588-8 (ebk)

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Project Manager: Jennifer Bingham

Acquisitions Editor: Traci Martin

Editorial Manager: Rev Mengle

Client Account Manager:
Cynthia Tweed.

Content Refinement Specialist:
Tamilmani Varadharaj

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

Foolish Assumptions... 1
Icons Used in This Book.. 2
Beyond the Book... 2

CHAPTER 1: 	 Living in a Cloud-Native World.. 3
Understanding the Cloud-Native Environment................................. 3
Running Cloud-Native Applications.. 5
Seeing the Importance of Kubernetes.. 9

CHAPTER 2: 	 Securing Kubernetes.. 11
Understanding Kubernetes Security... 11
Building a Secure Foundation.. 14
Implementing Multitenancy... 17

CHAPTER 3: 	 Securing Containers... 21
Exploring the Container Lifecycle.. 21
Identifying Issues Early... 23
Scanning Images Regularly.. 25
Protecting Runtime... 25

CHAPTER 4: 	Keeping Kubernetes Compliant...................................... 27
Defining the Challenges.. 27
Implementing Compliance Checks.. 29
Building Controls... 31

CHAPTER 5: 	 Implementing a Container Security Solution...... 33
Seeing How Container Security Is Essential..................................... 33
Determining Container Security Needs.. 35

Finding container image vulnerabilities...................................... 35
Spotting vulnerabilities in third-party libraries.......................... 35
Mixing up new misconfigurations.. 36
Going overboard with container privileges................................ 36
Stashing sensitive data in the container writable layer............ 36

Painting the Big Picture.. 37

iv Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 6: 	 Ten Kubernetes Security Best Practices.................. 39
Sharing Responsibility.. 39
Strengthening the Foundation.. 40
Keeping Images Safe... 40
Maintaining Isolation.. 40
Getting a Handle on Access... 41
Ensuring That Privileges are Limited.. 41
Trusting No One.. 41
Ensuring Early Warnings... 42
Keeping Showtime Smooth.. 42
Knowing Your Compliance Needs... 43

Introduction 1

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Cloud-native applications may not be brand-new, but they’re
really coming into their own, according to the Cloud Native
Computing Foundation. The organization says that they

are, in fact, the “new normal,” and why wouldn’t they be? They’re
pretty much unsurpassed in terms of flexibility, scalability, and
agility.

That said, like most good things in life, they’re not risk-free.
The containers they employ have vulnerabilities, the cloud where
much of the action happens has lots of complexities and risks
involving privileges, and the Kubernetes platform that makes it
all work needs dedicated hardening.

If your organization is among the many banking on cloud-native
applications running in a Kubernetes environment, you need to
put security front and center. That means adopting security best
practices, acquiring the best tools, and giving security a seat at
the table throughout the lifecycle. Security shouldn’t be relegated
to its own lonely silo.

Kubernetes security starts with a strong foundation, secure infra-
structure, and a well-protected operating system. It recognizes
that multitenancy is the way of the world, ensuring that users and
namespaces coexist harmoniously.

Your organization’s approach to Kubernetes security must iden-
tify issues early, scan images and resources throughout the
lifecycle, and keep runtime safe. It must hardwire controls and
facilitate whatever compliance your industry demands.

Foolish Assumptions
In writing this book, we assume that your work is heavily involved
in making innovative cloud-native applications happen.

»» You may have a role in DevOps or DevSecOps, perhaps site
reliability engineering, or maybe you’re an information
security leader.

2 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» You know cloud-native applications are essential for your
organization’s future and that they have inherent risks.

»» You’re determined to rely on Kubernetes but want to sleep
well at night knowing that security is under control.

Icons Used in This Book
Check the margins for guideposts spotlighting what you’re read-
ing. They’re icons, and this is what they mean:

Don’t worry if your highlighter has run dry, because this icon
underscores the most important points.

Looking for advice you can act upon? Look no further than the
paragraph next to this icon.

If you’re exploring Kubernetes security, you know life is danger-
ous. This icon identifies an area of potential concern.

Beyond the Book
This isn’t a long book, and we admit that there’s more to know
about these topics. For a deeper dive into Kubernetes security,
here are some places to look:

Wiz: www.wiz.io/solutions/container-and-kubernetes-security

Kubernetes: kubernetes.io

Cloud Native Computing Foundation: www.cncf.io

http://www.wiz.io/solutions/container-and-kubernetes-security
http://www.cncf.io

CHAPTER 1 Living in a Cloud-Native World 3

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Getting a handle on the cloud-native
environment

»» Building and running cloud-native apps

»» Orchestrating with Kubernetes

Living in a Cloud-Native
World

This chapter explores how cloud-native applications help
businesses meet the need for speed and agility in a compet-
itive environment. It explores how cloud-native app devel-

opment differs from the ways of the past, how microservices and
containers fit into the picture, and how Kubernetes helps make it
all work.

Understanding the Cloud-Native
Environment

Back in the old days, it was not a compliment to talk about people
having their heads in the clouds. They weren’t paying attention,
they were daydreaming, or worst of all, they weren’t in touch with
reality.

For software engineers these days, it’s the ones who don’t have
their heads in the clouds who are out of touch with reality. Every
one knows that the cloud-native environment is where it’s at —
where application development can be most efficient, where

4 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

operations can be the most cost-effective, and where resilience
and availability are the most likely.

Simply put, cloud-native means building, deploying, and manag-
ing your applications in cloud computing environments. Appli-
cations that are born to live in the cloud tend to be flexible and
resilient, easily scalable to meet the ups and downs of demand,
and easy to update as needs change.

Indeed, being cloud-native means apps can be changed and
updated quickly and frequently, with no impact on service deliv-
ery. Apps can be developed and optimized quickly and then
undergo continuous improvement based on user feedback, all at
the speed of business.

It’s a tremendous competitive advantage that boils down to a few
main pluses:

»» Greater efficiency: Applications can be built quickly, with
the help of automated tools and powerful cloud services.
The cloud-native world is a great place for DevOps and
continuous delivery practices to live.

»» Powerful scalability: The components within a cloud-native
app are isolated and can be scaled independently of one
another. It’s not uncommon for parts of an app to need
faster updates than others, and it’s easy to make this happen
(the next section of this chapter explains more about how
this works).

»» Exceptional availability and reliability: Who wants
downtime? No one, of course. In the cloud-native environ-
ment, updates can happen again and again and again, as
often as you want, without impacting availability. Cloud-
native apps are, as a whole, more resilient, and if one part
of the app has issues, it won’t bring the whole thing down.

»» Lower costs: One thing that’s missing from the cloud-native
environment is a bunch of expensive physical infrastructure
that your organization used to have to buy and maintain.
Capital expenditures can drop, and the equally good news
is that operational expenditures can see savings, too. And
the scalability mentioned above means that computing and
storage resources can be what they need to be right now,
not what they possibly might need to be a few years from
now. That saves money.

CHAPTER 1 Living in a Cloud-Native World 5

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Running Cloud-Native Applications
One of the things that enables the magic of cloud-native devel-
opment and improvement is the use of open-source components.
The Cloud Native Computing Foundation (CNCF) helps make that
happen, supporting the open-source community in the develop-
ment of cloud-native components.

The CNCF has been around since 2015, and it has been regularly
surveying members to see how the cloud-native world is unfold-
ing. Its latest declaration is that 2022 was “the year cloud-native
became the new normal.”

Ask the CNCF what the building blocks of cloud-native archi-
tecture are, and you’ll get a short list of elements that together
are the secret sauce. Read on to learn more about microservices,
containers, APIs, service meshes, and immutable infrastructure.

Understanding the tremendous benefits of the cloud-native envi-
ronment begins with an exploration of what exactly a cloud-
native app is and how it’s different from yesterday’s applications.
That understanding begins with one word — microservices — and
in particular, the first half of that word, “micro.”

Microservices are small and interdependent building blocks of
a cloud-native application. Software developers break apart the
various functionalities of their application into smaller microser-
vices that each works on its own. Using these smaller pieces to
create a greater whole is an incredibly powerful approach for a
number of reasons.

For one thing, it allows developers to divide and conquer, with
different tasks tackled by different people. Second, the concept
allows developers to tweak and improve small pieces of the app
without touching the rest of it. Even if one microservice fails, the
application can continue to function while the developer fixes the
problem.

Also, microservices make it a whole lot easier to add functional-
ity or scale up the application’s capabilities. And it doesn’t take
much in the way of computing resources to run any individual
microservice.

6 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Microservices stand in stark contrast to monolithic applications,
which has been the traditional way of doing things for years. A
monolithic enterprise application has one block structure that
handles all of the necessary functionalities.

The monolithic method has developers working on lots of func-
tionalities at the same time, before any of them can be released
for testing. It’s a far less flexible development method than the
microservices approach. It takes a whole lot longer to deploy new
software, and it doesn’t tend to be scalable.

Think about microservices as being kind of like a marching band.
The skills of each piece of the band are developed separately and
then joined together to make outstanding music. Need it louder?
Add more drummers. Want to build in a dazzling solo? Add the
best trumpeter you can find. And if one of the flute players calls
in sick, the band can still march on while the musician recovers.

The microservices approach is collaborative, just like that march-
ing band. It’s super-scalable, ready to react as the demand
increases. It functions well on different platforms, too — just like
the way that flutist can play a big role in a rock band, too.

Microservices developers have lots of great software tools in their
toolkit, too, helping them to automate the way they build, test, and
deploy functionality. Need a super-cool new function? There’s a
good chance it can be developed and deployed super-fast.

It takes fast and effective communication to bring together all
of these separate and independent microservices onto the same
page, functioning in harmony as a cloud-native application.
That’s where APIs come into the picture.

API is short for application programming interface, which is the way
the software programs exchange information with one another.
APIs are used by a cloud-native app’s independent microservices
to communicate with one another. They essentially facilitate
conversations, spelling out which data a microservice needs and
which results it can give in return.

Communication between multiple microservices is managed by a
software layer in the cloud infrastructure known as a service mesh.
By using the service mesh, it’s possible to bring in new microser-
vices with new functionality without having to write new code in
the application.

CHAPTER 1 Living in a Cloud-Native World 7

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The service mesh doesn’t bring any of its own functionality into
the application but rather handles all of the service-to-service
communications. It sorts out the complexities of the complex
microservices architecture to be sure that there’s no cloud-native
app equivalent of the famed movie quote from the late 1960s,
“What we’ve got here is a failure to communicate.”

Containers are another key to the power of the cloud-native envi-
ronment and are a cloud-native app’s smallest compute unit.
Containers are software components that isolate elements of
cloud-native architecture, including applications and processes.
A microservice’s code, for example, is packed into a container,
along with dependencies such as resource files, libraries, and
scripts.

Each element lives in its own container, allowing it to run inde-
pendent of physical resources. That means cloud-native apps
are operating independently of whatever operating system and
hardware on which they are running. Thanks to the flexibility
that containers allow, developers can deploy cloud-native apps
wherever they want — fully in the cloud, on hybrid clouds, or on
premises.

Containers provide a powerful alternative to virtual machines
(VMs), which emulate specific hardware systems by running soft-
ware on top of physical servers. Each VM runs its own operating
system, and it’s possible to run VMs with varying operating sys-
tems on the same server.

When they came onto the scene, VMs were a great advance for
running applications. Applications could be consolidated on
a single system rather than needing their own servers. They
reduced costs, sped up server provisioning, and improved disaster
recovery.

But they also added their own complexities. Because each VM
needs its own operating system image, that increases the memory
and storage overhead. That makes development, testing, and pro-
duction more complicated. And perhaps the biggest shortcoming
when compared to containers is the limited portability when it
comes to moving apps between traditional data centers and public
or private clouds.

Containers, on the other hand, can be deployed practically at the
snap of your fingers. They require fewer computing resources

8 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

compared to what’s needed with conventional app development.
And the cloud computing resources they require can be scaled far
more efficiently. All of these benefits greatly enhance business
agility.

It’s worth noting that containers can run inside virtual machines
or on physical servers. They contain an application’s library and
processes, but they don’t include the operating system, which
means that they’re lightweight and portable.

Here’s another distinction: the difference between mutable ver-
sus immutable infrastructure. Mutable essentially means that
something can be changed, and immutable is the opposite — it
can’t be changed. An immutable infrastructure is part of the secret
sauce of the cloud-native environment.

At first, that may have some people scratching their heads. With
mutable infrastructure, you can upgrade key infrastructure ele-
ments without touching the apps or the data running there. And
while that sounds like a good thing, upgrades are notorious for
introducing issues and uncertainties.

Therein lies the benefit of unchangeability. Very long story short,
it makes cloud-native deployment a whole lot more predictable.
Rather than upgrade a server, you simply discard it and move to
a new one.

Moving from one place to another is easy when everything is con-
tainerized, as it is with a cloud-native app. That app is hosted on
servers that will be unchanged once they are deployed, and if it
ultimately needs more compute resources, the app is moved to
a server with higher performance. It can happen instantly and
automatically, with no risky manual upgrades and no downtime.

As long as we’re talking about moving things around, it’s worth
bringing some compass points into the conversation. The cloud-
native environment functions through lots and lots of what’s
known as east-west traffic.

East-west traffic is essentially the movement of data internally,
and the term can refer to data moving within a data center or
network. In this case, the traffic is moving among the microser-
vices and servers that make an app work. That traffic needs to
flow instantly and without impairment, even though the various
microservices might live in completely different places across
public clouds, hybrid clouds, or on premises.

CHAPTER 1 Living in a Cloud-Native World 9

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

As a cloud-native application scales, this east-west traffic can
grow exponentially. That growth brings along challenges in terms
of network performance, security, and visibility. A cloud-native
app won’t thrive without proper management of east-west traffic.

The obvious opposite is north-south traffic, which is the move-
ment of data to and from external places, or to view it simply,
to and from the world outside. Traditionally, these are the doors
that have gotten the most attention from information-technology
security professionals, because they’re seen as the places that
cyberthreats can find their way in. Traffic flowing in is said to be
moving south, while northbound traffic is headed out.

Seeing the Importance of Kubernetes
As explained above, cloud-native applications rely on a collec-
tion of microservices that work together to do whatever it is that
the application sets out to accomplish. These microservices and
related elements take up residence in containers that are deployed
in the cloud, on premises, or most likely, a combination of places.

It takes some serious coordination to bring it all together in the
seamless way that users experience cloud-native apps. These
days, Kubernetes is pretty much the standard for orchestrating
cloud-native applications.

To continue with musical metaphors, move from the marching
band to a symphony to talk about orchestration. Any symphony
has a bunch of instruments that each has its unique part to play.
It could sound like chaos, as it does when the symphony is tun-
ing up. The conductor brings order to the chaos. Likewise, in the
cloud-native world — with its multiple containers and microser-
vices — orchestration ensures that they harmoniously interact,
scale, and heal as needed.

Kubernetes was originally designed by Google, was announced in
2014, and is now maintained by the CNCF. Its name is ancient
Greek — it would be nice if it translated into “symphony con-
ductor,” but the reality is that it means “pilot” or “helmsman”
(which when you think about it, is pretty appropriate, too). Some-
times folks will abbreviate it as K8s, with the numeral 8 standing
in for the eight letters between the K at the beginning and the
final s in Kubernetes.

10 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In Kubernetes, global decisions come from a group of master
nodes that are collectively known as the control plane. The control
plane manages the various worker nodes and pods that make up
a Kubernetes cluster and run the show in the containers. Kuber-
netes is in many ways like a world all its own, but it also con-
stantly interacts with the underlying infrastructure, requiring
careful tuning and configurations.

If that sounds fairly simple, well, it’s not. Deploying and managing
a Kubernetes cluster involves a lot of intricacies, from networking
to storage configurations. That’s why many cloud providers offer
managed Kubernetes services, designed to ease the experience for
users and really democratize the world of Kubernetes. Managed
services make Kubernetes adoption accessible to both startups
and big enterprises.

These managed services certainly ease the burden, but they don’t
eliminate all responsibilities on the part of users. In fact, Kuber-
netes users and infrastructure operators follow a shared responsi-
bility model. Simply put, while the cloud provider handles many
infrastructure-related tasks and takes responsibility for the
security of the cloud, users remain accountable for specific con-
figurations and, most important, the security of their applications
and data.

That means those running cloud-native applications must ensure
the security of all data they use, whether at rest or in transit. They
need to defend their orchestration, which as noted earlier, these
days is likely to be Kubernetes.

Enterprises need to keep watch over their containerized appli-
cations, which are vulnerable to a whole range of exploits and
threats and malware and zero-day attacks. They need to take
responsibility for identity and access management, all the various
configurations, encryption, network traffic protection, segmen-
tation, and the like.

In short, cloud providers will ensure a secure foundation upon
which cloud-native applications can be built and deployed. But
users must take it from there and take full responsibility for the
security of their cloud-native operations.

CHAPTER 2 Securing Kubernetes 11

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Seeing where security fits into the
Kubernetes picture

»» Making sure the foundation is secure

»» Operating in a multitenant world

Securing Kubernetes

If containers and microservices are the present and the future,
Kubernetes paves the path toward today’s and tomorrow’s suc-
cesses. This chapter brings the conversation down to earth a bit

for the obligatory discussion about security.

Read on to learn more about how Kubernetes fits into container
orchestration from a security perspective, why security mustn’t
be an afterthought, what makes for a secure foundation, and how
the concept of multitenancy is both a key to Kubernetes success
and a challenge to its security.

Understanding Kubernetes Security
Kubernetes is an orchestrator for containers. It’s the conductor
responsible for helping containers and the microservices inside
them make lovely music together.

Each container is a lightweight, stand-alone, portable pack-
age that includes everything needed to run what’s inside, but it
takes the expert orchestration of Kubernetes to effectively man-
age and scale the containers that make any given cloud-native
app function. Kubernetes automates the deployment, scaling, and

12 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

management of containers, ensuring that they’re running where
they should, that they’re able to recover from failures, and in
general, that they’re working together efficiently.

And, you won’t be surprised to know, that Kubernetes orches-
tration can allow all of this to happen in a secure way. After all,
the title of this book as well as this chapter both have to do with
Kubernetes in general and security in particular. But Kubernetes
security doesn’t just happen — if it did, there’d be no need for
this book and the insights on the pages within.

Indeed, because Kubernetes is a complex system built of many
different components, it’s not just a matter of switching on a
security module or installing a security tool. There are various
types of security risk that the layers and services in a Kubernetes
cluster face, and security teams need to address these wide-
ranging risks. They need to know how to secure such components
as nodes, pods, networks, and data.

Kubernetes does, in fact, include some types of native security
tooling, such as role-based access control (RBAC). But it isn’t, in
and of itself, a security platform, which means that you’ll need to
employ third-party security tools to help get the job done fully.

But before diving more deeply into specifics about Kubernetes
from a security perspective, it’s worth giving more thought to the
importance of security in a containerized environment in general.
Security is a central consideration in any information technol-
ogy deployment, but with regard to containerization, here’s some
food for thought:

»» Isolated workloads: One of the key strengths of container-
ization is that containers operate independently. That’s vital
for a number of reasons, one of which being that a compro-
mise in one shouldn’t impact others on the same host.
Proper security measures can help ensure that isolation.

»» Many microservices: Containerization typically goes hand
in hand with a microservices architecture that breaks the
app into independent components. That inevitably means a
larger attack surface, necessitating the strongest security for
every container and all the communication that goes back
and forth between them.

»» Rapid deployment: Employing containers that are light-
weight and easy to deploy fast is one of the big selling points

CHAPTER 2 Securing Kubernetes 13

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

for development and operations teams. Security is essential
for ensuring that haste doesn’t make waste, and that only
trusted and secure containers are deployed.

»» Portability: Portability is a powerful advantage, allowing
containers and microservices to move from one environ-
ment to another. It’s vital, though, to ensure security in each
environment, and to make sure that you don’t replicate
security issues between environments.

»» Immutable infrastructure: Since you’re not making
modifications following deployment of individual servers,
you must have a robust security posture from the start.
Otherwise, vulnerabilities and misconfigurations will persist.

»» Orchestration challenges: Container orchestration through
platforms such as Kubernetes is complicated, requiring
proper understanding and configuration of lots of different
security features, including network policies, secrets
management, and RBAC.

»» Visibility: Ineffective monitoring is an invitation to security
concerns, but the containerized world is a visibility challenge,
given how dynamic it is and how any given element may be
short-lived and transient.

»» Compliance needs: Depending on the industry and the
region where operations are taking place, compliance
requirements may be strict, with seriously expensive
penalties. Failing to properly secure containers could yield
painful consequences.

Those are some general realities about containerization that make
security so essential. There are a number of security challenges
that are specific to Kubernetes (although many of these are issues
in other kinds of deployments, too).

»» Getting the configuration wrong: This should come as no
surprise because it’s true with any IT deployment, but
configuring Kubernetes incorrectly can lead to security
vulnerabilities. Just one example is exposing sensitive ports
to the public internet.

»» Image problems: Containers are built from images, and if
the images are insecure or outdated, it can be a security risk.

»» Getting exhausted: If resource limits are poorly configured,
that can open the door to resource exhaustion attacks.

14 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

That’s an issue in which one container consumes all available
resources, leading to denial of service.

»» Mismanagement of secrets: Mishandling secrets is a sure
risk for data breaches, so they must be stored securely and
rotated regularly.

»» Inadequate runtime monitoring: Real-time monitoring
and alerting are vital for detecting and responding to security
incidents promptly. In a complex environment such as
Kubernetes, that can be a challenge.

A bit of good news is that even though Kubernetes is an orches-
trator rather than a security platform, it has elements that are
helpful from a security perspective.

»» Staying safe with RBAC: Kubernetes provides mechanisms
for role-based access control that determine who can access
and modify resources within the cluster. Only authorized
people are allowed in.

»» Keeping things isolated: Kubernetes ensures that contain-
ers are isolated from each other, which is a key to greater
security. It means that they can’t interfere with or access each
other’s data or processes. This isolation is crucial for security.

»» Employing secrets management: As mentioned above, this
is a potential challenge, but Kubernetes does have a built-in
system for storing and managing sensitive information such
as passwords and API keys.

»» Setting network policies: By defining network policies to
control how pods communicate with each other, you can
make unauthorized network access more difficult.

»» Remaining up to date: Perhaps the best way to stay safe is
to ensure that you’ve got the latest version of Kubernetes
running (which is, again, true with any IT deployment).

Building a Secure Foundation
A strong foundation is crucial for Kubernetes security, as it is
with any IT implementation. Your organization will need to
secure Kubernetes nodes using the same kinds of strategies that
you use on any kind of server. It’s vital to secure the underlying

CHAPTER 2 Securing Kubernetes 15

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

infrastructure, the operating system (OS), and the container
images.

To begin with, the infrastructure in which Kubernetes runs must
be secure from both physical and network-based attacks. Any
infrastructure vulnerability or misconfiguration can have an
impact on the overall security of a Kubernetes cluster. Preventive
actions include such measures as network segmentation, solid
firewall rules, and proper access controls.

Similarly, the host OS on which Kubernetes runs must be hard-
ened and regularly patched in order to keep attack vectors at a
minimum. To keep the OS from being a dangerous entry point,
regular updates are a must, and any OS-specific security guide-
lines should be followed carefully. And in general, you’ll want to
minimize the attack surface, through such actions as removing
any extraneous applications and libraries as well as user accounts
that aren’t needed.

A third key component to this solid foundation is confidence in
secure container images. It’s pretty much table stakes that con-
tainer images must be free from vulnerabilities and malicious
code. The application risk goes up with every insecure or unveri-
fied image. A secure image registry is a helpful solution, along
with regular image scanning for vulnerabilities, establishment of
best practices for building and signing images, and limiting base
images to those from trusted sources.

The Kubernetes control plane can be seen as a part of the solid
foundation. It is, essentially, the command center or brains of
the Kubernetes cluster, managing and coordinating the activities
there. It has a number of components intended to help that func-
tion be secure. One of the most critical is the API server.

This is, essentially, the entry point for interacting with the clus-
ter. It’s like a receptionist, receiving requests from users, devel-
opers, and other parts of the cluster, and deciding who gets in the
door.

The Kubernetes API server authenticates users, service accounts,
and other entities seeking to access the cluster. Acting sort of like
a security guard, the API server does this through a number of
authentication methods, such as client certificates and bearer
tokens. Strong authentication means only authorized entities can
interact with the cluster.

16 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Just being approved entities doesn’t mean they can do whatever
they want, though. After authenticating an entity, the API server
must decide whether that entity is allowed to perform whatever
actions it is trying to do within the cluster.

Authorization policies are enforced using RBAC, attribute-based
access control (ABAC), or other mechanisms. The idea is to ensure
that users have the appropriate permissions to perform specific
operations on cluster resources.

Control plane security components include admission controllers,
which are there to enforce rules related to API requests. They can
change a request object or deny a request altogether. And control-
ler managers ensure that the cluster is running smoothly, checking
to see that the actual state matches the desired state.

Then there’s the etcd, a key value store that is the backing store for
all cluster data, including highly sensitive data. And the scheduler
determines which node does what and when based on resource
requirements and other factors. All of the various control plane
components have a hand in maintaining secure operations.

The Kubernetes term data plane generally refers to components
that handle the actual data traffic and workloads within a Kuber-
netes cluster. Sometimes known as the runtime plane, it’s where
workloads run and communicate. Worker nodes on the data plane
carry out commands that come from the control plane.

The main components of the data plane include:

»» Pods: A pod is the smallest deployable unit that can be
created and managed in Kubernetes. It can host multiple
containers that together make up a single unit of
deployment.

»» Services: Services define a set of pods and establish how to
access them, determining such things as load balancing
traffic between pods.

»» Ingress: External access to the services in a cluster happens
by way of an application programming interface known as
an ingress.

»» Kubelet: This agent runs on each node in the cluster and
ensures that the containers are running in a pod.

CHAPTER 2 Securing Kubernetes 17

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Kube proxy: This network proxy runs on each node in the
cluster. It implements part of the Kubernetes service
concept, maintains network rules for pod communication,
and allows network communication to and from Pods.

Implementing Multitenancy
Given that Kubernetes is the de facto standard when it comes to
container orchestration, and that so much of what happens in
this world lives in the cloud, any user can expect that there are
neighbors out there operating nearby. Just as multitenant hous-
ing such as apartments and condos are developments where a lot
of different people live in close proximity, a multitenant cluster is a
Kubernetes cluster that’s shared by multiple users and workloads,
known as tenants.

And just as any apartment complex has rules to ensure that all
residents are safe and able to get along well with one another, a
multitenant cluster has lots of mechanisms that isolate tenants
from one another, allocate resources fairly, and ensure that no
one is endangering neighbors.

For starters, think a bit more about that apartment complex and
consider that any given unit is assigned to a specific person or
people. That unit in the corner has been declared to be Mary
Smith’s apartment and nobody else’s, and it might even have her
name on the mailbox.

In a multitenant Kubernetes environment, namespaces serve the
same kind of purpose. They’re essentially like virtual clusters
within a single physical cluster, providing a scope for names and
offering a way to divide up cluster resources between multiple
users, teams, or projects.

Here are some thoughts on how namespaces can help isolate ten-
ants from one another:

»» Isolating resources: It’s possible to allocate resources such
as CPU and memory for specific namespaces. That way one
team or project doesn’t monopolize all the cluster resources.

18 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Controlling access: RBAC can be employed to grant users
access only to specific namespaces. A particular team can
only access its own namespace and not that of a different
team. As a matter of fact, it’s also possible to use RBAC
within a given namespace to grant even more specific
permissions to users of that namespace.

»» Enforcing network policies: Pods can, by default, commu-
nicate across namespaces, but network policies can be
established and enforced to control those communications
and add an extra layer of isolation.

»» Reducing naming confusion: Just like there might be
multiple people named George in a big apartment complex, it
would not be a surprise if different developers in a multiten-
ant environment coincidentally picked the same name for a
pod. With namespaces, it’s possible for resources in different
namespaces to use the same name without any conflict.

RBAC essentially allows you to define who can do what within a
Kubernetes cluster. A role or cluster role defines a set of permis-
sions relating to Kubernetes API resources, such as get, list, cre-
ate, and delete. A role is namespace-specific, but a cluster role
applies cluster-wide.

Role bindings, meanwhile, assign roles to certain sets of users,
groups, or service accounts. They are namespace-specific. Clus-
ter role bindings serve the same purpose, except that they are
cluster-wide.

A concept known as least privilege helps to ensure that all users
and roles are minding their own business and don’t have access
to mind anyone else’s business. It’s a concept that’s not unique
to Kubernetes — it’s a wise idea that helps ensure the tightest
security in any system.

Least privilege is pretty much what it sounds like. When assigning
roles and permissions, least privilege means that any entity gets
only the permissions necessary to perform its tasks and noth-
ing more. For example, if a user only needs to view pods in a
namespace, then that user should not be granted permission to
delete those pods (or, for that matter, to view or delete pods any-
where else beyond that namespace).

It’s pretty obvious why least privilege is important from a security
perspective. It’s no different from that multitenant apartment

CHAPTER 2 Securing Kubernetes 19

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

complex mentioned earlier in which residents get keys only to
their own space and no one else’s.

But it also helps prevent mistakes. An apartment manager doesn’t
want a typical resident to mess with the wiring inside the walls,
for the obvious reason that most residents really wouldn’t know
what they’re doing and might end up burning the whole place
down. Least privilege in a multitenancy implementation helps
prevent accidental deletions or other mishaps.

Given the inherent Kubernetes complexity of distributed systems,
multitenancy, and the scale of operations, network security is of
paramount importance. There are a number of reasons.

For one thing, services are constantly communicating with one
another. Any security breach in one service can potentially com-
promise others if it’s not properly isolated. In a multitenant
implementation, network isolation and strict access controls are
essential for preventing unauthorized access and breaches.

Network security also is vital for safeguarding against various
attack vectors that come from constant internet exposure. And
even if applications are trusted and container processes are con-
tained, the defense-in-depth concept suggests that the network
should add more layers of defense.

Network policies dictate how pods communicate with each other
and with other network endpoints, enabling security at the
microservices level. Pods are not isolated by default, but network
policies can ensure that only allowed communications occur.

As discussed in general in Chapter 1, a service mesh is a dedicated
infrastructure layer built to handle service-to-service communi-
cation in a microservices architecture. It provides such features
as traffic management, observability, and security. Just as RBAC
settings should follow a least privilege model, service mesh will
ideally take a zero-trust stance.

Zero-trust is a security concept in which no entity, internal or
external, is trusted by default. It takes a skeptical eye toward all
communications to ensure that nothing bad accidentally makes
its way into the system. When zero-trust is the chosen approach,
all access or communication requests must be authenticated and
authorized.

20 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A service mesh is an ideal place to build this kind of defense.
Through a service mesh, policies can be enforced to control
which services can communicate with each other, regardless of
their location or network perimeter. A service mesh can enforce
authentication from the originating user or service all the way to
the destination service, which ensures that only legitimate com-
munications are allowed to pass.

A zero-trust model effectively shrinks the attack surface, because
even if an attacker gains access to the network, it can’t freely com-
municate or access services. It’s helpful from a compliance per-
spective, too, because a zero-trust model can help organizations
meet whatever stringent regulatory and compliance requirements
might be prevalent in their industry.

CHAPTER 3 Securing Containers 21

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Learning the lifecycle of a container

»» Spotting trouble early on

»» Keeping a close eye on images

»» Running Kubernetes securely

Securing Containers

Containers make the cloud-native world go around, and
Kubernetes allows that to happen. This chapter digs more
deeply into the container lifecycle and where security fits

in, and discusses the importance of catching problems early in the
game. It also points out why images must be scanned regularly,
even before they’re in production, and offers more detail into how
to make runtime a safe time.

Exploring the Container Lifecycle
To get a solid handle on Kubernetes security, it’s vital to be think-
ing about security throughout the container lifecycle. We’ll get
into more details about the security part of the story in a little bit,
but first it’s worth taking a big-picture look at that lifecycle, from
build time to runtime.

By the time the build time phase gets going, developers have writ-
ten the application code that will be deployed in containers, and
they’re now ready to build the containers. In this phase, the appli-
cation code, dependencies, and runtime environment that have
been specified by developers are packaged into a container image.

This typically involves creating a manifest that includes instruc-
tions for building a container image, and then using a container

22 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

engine such as Docker to build the actual image. The manifest
in this case will be known as a Dockerfile, and may start from a
base image such as Ubuntu, install dependencies, and then add
the application code.

This container image built with these instructions includes every-
thing the application needs to run. It’s often tagged with a specific
version to tell it apart from other builds. This step is important for
image versioning and plays a vital role in the deployment process.

Once the image is built, it’s often pushed to a container regis-
try or image repository — perhaps Docker Hub, Google Container
Registry, or Amazon Elastic Container Registry. The registry is a
centralized place where built images are stored and managed.

Now comes deploy time, which in the Kubernetes world means
taking a container image and creating various objects that’ll han-
dle the lifecycle on a Kubernetes cluster. For example:

»» Pods: The smallest deployable units in a Kubernetes cluster
that can contain one or more containers.

»» Services: These expose applications running on a set of
pods as a network service.

»» Deployments: These are controllers for managing the
deployment and scaling of containers.

»» Ingress: This is an API object that manages external access
to the services in a cluster, typically by way of HTTP.

These objects are defined in manifest files and applied using
Kubernetes command-line tools such as kubectl. This lets Kuber-
netes know how to handle and orchestrate the containers based
on the images.

Now, the show begins — it’s runtime! This is the phase where
containers are actively running on the Kubernetes nodes. Kuber-
netes handles the orchestration, ensuring that the deployment’s
current state aligns with the desired state that has been specified
in the deployment configuration. Kubernetes manages the scal-
ing, self-healing, and updates, for these containers.

Here’s just a bit more detail about the runtime part of the lifecycle:

»» Setting the schedule: The scheduler selects a suitable node
for the pod based on resource requirements, policies, and

CHAPTER 3 Securing Containers 23

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

other constraints. It places the pod on a node where it
should be able to efficiently operate.

»» Creating the pod: Kubernetes interacts with the container
runtime on the chosen node and pulls the relevant image
from the registry. It starts the container within a pod.

»» Managing the lifecycle: Now that everything is up and
running, Kubernetes monitors the state of pods. If system
failures or resource constraints cause a pod to fail,
Kubernetes will restart or reschedule it. High availability is
the goal in order to ensure that deployed services are
reliably accessible and the desired state is maintained.

»» Scaling and updating: Kubernetes seamlessly handles
rolling service updates and scaling, doing so without causing
any downtime. It watches traffic and other metrics to scale
up and down by adjusting the number of pod replicas.

»» Ending the show: If a pod needs to be replaced or a service
is no longer needed, Kubernetes gently terminates pro-
cesses. This frees up resources and makes the node
available for new or different pods.

Identifying Issues Early
The wisdom is the same whether you’re talking about a medical
condition, a car problem, or any kind of information technology
security consideration. The earlier you can spot a problem, the
better off you’ll be. Early identification of issues within Kuber-
netes is vital for multiple reasons:

»» Security: Given that this is a book about security, you won’t
be surprised that this tops the list. The most immediate
concern with vulnerabilities and misconfigurations is the
security risk they pose. In Kubernetes, certain misconfigura-
tions can leave your entire cluster exposed to attacks, and
early detection can keep them from ever happening.

»» Trust and compliance: For organizations in many indus-
tries, or those operating in certain states or countries,
regulatory compliance is a huge deal. The consequences of
failing to comply can be catastrophic from a financial
perspective, which makes extra care early on a must.

24 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Cost efficiency: The longer a security vulnerability or
misconfiguration remains in the development and deploy-
ment pipeline, the more costly it becomes to fix. Catch it
early and you can save time and resources.

»» Continuity: Downtime is costly from financial and customer-
satisfaction perspectives. Preventing downtime through
early detection is priceless.

These reasons underscore why it’s so vital to integrate security
from the earliest points in the development process and then con-
tinue them throughout. This is the “shifting left” concept that
allows developers to identify and address security concerns as
coding and building moves forward.

And it’s just as important in runtime so that security teams
can spot threats and vulnerabilities while in production, audit
how things are going, and perform forensics as needed. Every
organization building its future on Kubernetes needs a full-
lifecycle approach that makes container security an integral
part of the whole continuous integration/continuous delivery (CI/
CD) pipeline.

To start with the coding phase, best practices include building
code scanning fully into the CI/CD process. Doing so can keep
malicious content from finding its way into production, and it
can also improve code quality by spotting flaws early on.
Dependency scanning is another key practice, because container
apps have dependencies and libraries from various sources.

Your organization needs to be able to automatically assess one
security policy across the entire cloud and throughout the
development lifecycle. A healthy approach includes scanning
infrastructure-as-code files for misconfigurations and security
risks — across Dockerfiles, Kubernetes YAML manifests, and
Helm charts.

The idea is to validate security policy compliance before container
images are deployed in the cluster. Development teams are able to
work autonomously to prevent risks if — right there in their usual
CI/CD pipeline — they have a tool that secures container images
and detects vulnerabilities and exposed secrets. With the right tool
and approach, it’s possible to validate compliance before images
hit production but without slowing the development process.

CHAPTER 3 Securing Containers 25

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Scanning Images Regularly
Once a cloud-native app gets to the build stage you’re in the
business of building containers, and it’s vital to keep the closest
eye possible on the container images from here on out. With a
full-life-cycle solution, that means regular scanning.

Before containers are ever deployed, they should be scanned in
registries. That means having a vulnerability scanner integrated
into the registry to gain threat visibility. Policy checks are needed
for each container, and for builds flagged as non-secure or out of
compliance, security teams must decide whether to block them.

If issues are discovered, it should be simple to channel them to
appropriate owners with Kubernetes-native environment segre-
gation that’s based on subscription, cluster, and namespace. When
checking out tools, look for an API console and command-line
interface so that developers can tackle the risks easily and quickly.

This is also where an admission controller, mentioned in
Chapter 2, can come into play. An admission controller is a plugin
that determines how a cluster is used, a gatekeeper that can check
out API requests. It can mandate a security baseline across a
whole namespace or cluster and reject deployments that are not
up to snuff.

In the case of images, an admission controller can insist that
images only be pulled from certain registries. It can deny unknown
image registries, which is one great way to avoid ending up with
noncompliant images in a Kubernetes environment. Beyond mak-
ing judgments based on whether registries are trusted or not, an
admission controller can take matters further by blocking unveri-
fied images.

Protecting Runtime
We mentioned “shifting left” above, which is essential as you
roll out full-lifecycle security protocols. Security necessarily has
to happen from the very beginning. But note that we’re talking
full lifecycle. Just because you’re shifting left doesn’t mean you’re
ignoring what’s to the right.

26 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Indeed, security teams must assess Kubernetes clusters from
beginning to end, continually identifying threats and suggesting
remediation. Continuously scanning Kubernetes clusters is the
first step to identifying possible misconfiguration or excessive
privileges threats.

Real-time scanning makes it possible to identify data access from
the container to the cloud, to track lateral movement between
the cluster and the cloud, or notice when privileges are escalated,
which could be a sign of trouble. Indeed, a solid program must
have full visibility into combinations of risks that together might
be toxic, instances where two plus two equals an attack path to
critical resources.

Here’s what runtime container security needs in terms of agent-
less scanning across the full container stack. It must be able to

»» Map service accounts and network configurations while
analyzing cluster structure and context, network, identities,
and secrets. This offers insights across the cloud and
workloads, not just inside the container. It reveals potential
paths to and from the container as well as permissions to
get total understanding of risk. It must be able to see when
a cluster is exposed to the internet, and understand the
compliance posture against benchmarks such as those
from the Center for Internet Security (CIS).

»» Scan images of all running containers, with snapshots of
container hosts.

»» Scan workloads themselves. That includes applications,
containers, and virtual machines.

»» Pull containers from the disc volume and check out their
images for malware, exposed secrets, and other
vulnerabilities.

»» Scan registries that store container images.

An effective solution must keep a close eye on audit logs to see if
anything abnormal might be happening. It should be able to gain
visibility through the use of eBPF, which can enforce security poli-
cies, detect malicious behaviors, and then block unauthorized calls.

Again, the whole point is to keep a close watch for potentially
malicious and unauthorized behaviors. Given the consequences of
failures due to mishaps or attacks, prevention is by far the best-
tasting medicine.

CHAPTER 4 Keeping Kubernetes Compliant 27

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Seeing the compliance challenges of the
cloud

»» Keeping tabs on compliance

»» Creating compliance controls

Keeping Kubernetes
Compliant

No offense to the people in the compliance team, but devel-
opers want to focus on what they can do now and want to
do next, not what they aren’t allowed to do. Compliance is

the last thing they want to think about, but an organization that
neglects compliance isn’t going to make it long-term.

This chapter focuses on keeping Kubernetes compliant. That’s not
always easy anywhere, but the cloud poses particular compliance
challenges that are spelled out in this chapter. It also delves into
compliance checks and how they can be automated and compli-
ance controls that establish and enforce guardrails throughout
the application lifecycle.

Defining the Challenges
Kubernetes security is, of course, the primary focus of this book
and the reason you’re flipping through the pages. Every organiza-
tion that has any kind of information technology implementation
has security concerns of one sort or another. Many enterprises

28 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

also lose a lot of sleep over compliance concerns, especially those
in highly regulated industries such as healthcare and finance, or
those operating in Europe and other places where regulators are
watching especially closely.

If your information technology needs include speed and agility
(that’s nearly everyone), you’re looking to the cloud for its scal-
ability, flexibility, and potential cost savings. But the cloud brings
its own challenges to the table that can be particularly daunting
for those with compliance on the brain.

Here are some of the ways that compliance concerns can make life
in the cloud problematic:

»» Protecting data privacy: Just the acronyms GDPR and CCPA
strike fear in the hearts of executives and compliance officers.
Europe’s General Data Protection Regulation as well as the
California Consumer Privacy Act establish stringent rules for
data protection, along with downright severe penalties for
violations. Operating in the cloud can sometimes obscure
where data is stored, processed, and transmitted — and
where those things happen may make all the difference
regarding which rules apply. Indeed, cloud computing often
crosses international borders and happens in multiple
jurisdictions.

»» Maintaining control and visibility: Back in the old days
when on-premises environments were the norm, you had
much greater visibility and control over your systems and
data. Data flows and access can be harder to monitor
and control within a cloud infrastructure, which adds some
potential challenges to compliance auditing and
enforcement.

»» Dealing with data breaches: Data breaches are a concern
and a challenge anywhere and everywhere, but the multiten-
ant nature of the cloud and the broader attack surface can
ramp up the vulnerabilities. There are very specific compli-
ance requirements when bad things happen, including
breach notifications and detailed incident reporting, and
those tasks have the potential to be more challenging in
the cloud.

»» Keeping up to date: The cloud environment is all about
continuous deployment of applications and updates. Each

CHAPTER 4 Keeping Kubernetes Compliant 29

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

update is a potential compliance risk, which means compli-
ance checks must be built into the development pipeline.

»» Sharing responsibility: As mentioned earlier in this book,
cloud service providers operate under a shared responsibil-
ity model. The cloud provider takes responsibility for security
of the cloud, but the customer is responsible for the security
of what’s in the cloud. From a compliance perspective, this
can muddy the waters.

»» Trusting third parties: Highly regulated entities in particular
are on the hook for compliance, not just for their own
activities, but for those things they farm out to third parties.
Healthcare organizations, for example, must follow the
Health Insurance Portability and Accountability Act or face
its harsh penalties. They must be certain that their systems
and software and third-party connections, including those in
the cloud, are also HIPAA-compliant.

Living and working in the cloud means thoroughly understanding
the regulations applicable to your industry, as well as those that
apply in the geographies where you’re operating — and poten-
tially the geographies where your cloud computing is happening.
That necessitates a comprehensive compliance strategy for cloud
applications.

This kind of strategy could include adopting specialized compli-
ance tools, performing regular security and compliance audits,
and continuous monitoring. Just one more thing to think about
when making plans for Kubernetes security.

Implementing Compliance Checks
How can you be that sure your cloud-native operations are com-
plying with all the regulations that are applicable? How do you
know you’re following best practices? Compliance checks. Com-
prehensive compliance checks, that is, all across Kubernetes,
containers, and the underlying cloud.

The first step in implementing compliance checks is fully under-
standing what you’re complying with. Does GDPR apply to your
operations? Quite possibly, if you’re dealing with European cus-
tomers or operating in Europe in any way.

30 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

How about HIPAA? That’s a no-brainer if your organization is a
healthcare organization, but third parties with healthcare cus-
tomers may also need to pay attention. And these days, all kinds
of nontraditional companies are dipping their toes in the health-
care waters, even dollar stores out in the country.

What about PCI-DSS? Lots of organizations are savvy with that
acronym, short for Payment Card Industry Data Security Stan-
dard. Their cloud-native apps need to be in step.

Beyond regulatory requirements, compliance checks can verify
that your implementation is properly adhering to other controls
and policies that you’ve established.

Policy-as-Code, for example, involves writing code in high-level
languages to manage and automate compliance policies. It helps
maintain consistent compliance standards across cloud infra-
structure, containers, and Kubernetes.

Standardized configurations for containers and Kubernetes clus-
ters, based on industry best practices, also provide a benchmark
for meeting compliance standards. Strong access controls using
role-based access controls (RBAC) in Kubernetes also establish a
compliance foundation that can be checked and monitored.

As mentioned in Chapter 1, security is a continuous process.
That’s why, for example, you should continually scan container
images and get yourself a tool that keeps a continuous watch over
the whole picture, from the containers to Kubernetes to the cloud
environment where it’s all happening.

In the same manner, compliance checking and monitoring are
an ongoing, continuous need, too. Compliance checking should
assess and verify your compliance posture against whatever
framework or frameworks are appropriate for your business.
Want to do that manually? Probably not, so you’ll want a tool to
do that on your behalf.

A full-fledged compliance solution will automatically and con-
tinuously assess the compliance status of cloud environments,
comparing them with built-in or custom frameworks. Com-
pliance tracking should be simple, whether it’s within a single
framework or cross-frameworks impacting all business units and
applications in the cloud.

CHAPTER 4 Keeping Kubernetes Compliant 31

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This is actually possible right out of the box, with the right tool.
The solution from Wiz, for example, has more than 140 different
built-in frameworks, a whole alphabet soup of compliance acro-
nyms including HIPAA, NIST, SOC2, and dozens of others. It also
allows creation of custom frameworks that align with a specific
organization’s needs. And there are dedicated Center for Internet
Security (CIS) benchmarks for Kubernetes and Docker.

Reporting is, of course, a key to verifying and proving compliance.
Any effective solution needs to be able to generate compliance
reports that meet whatever requirements are applicable, for busi-
ness units or applications, or at a high level for execs.

Building Controls
Checking compliance is vital, but building compliance controls
is the key to ensuring that those compliance checks return rosy
results. Implementing compliance controls means integrating
policy enforcement at various stages of the lifecycle.

One way to go is using Open Source Software (OSS) standards
such as the Open Policy Agent (OPA). It’s a policy engine designed
to enforce policies across microservices, Kubernetes, CI/CD
pipelines, and API gateways, among other places.

Again, the first step is a full understanding of the specific com-
pliance standards that your application and environment must
adhere to. There’s no way to enforce compliance if you don’t
understand the rules.

Then, deploy OPA on the Kubernetes cluster. As a flexible policy
engine, OPA can enforce policies at various levels, from Kuber-
netes admission controllers to external APIs. OPA can function
as a validating or mutating admission controller in Kubernetes,
intercepting Kubernetes API server requests and modifying or
rejecting them, guided by the defined policies. An admission con-
troller can use OPA to audit or block deployments.

That leads to the next step, defining the policies. Here’s where
you write clear, fine-grained policies that are based on your com-
pliance requirements, whatever they might be. These policies

32 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

might specify resource limits or pod security contexts, or go so far
as controlling network access between microservices or managing
RBAC user access.

OPA can continuously monitor and enforce policies at runtime,
but it also can be built into the CI/CD pipeline. That’s how to
spot violations early in the development process, before they hit
production.

Like everything else in the ever-changing world of cloud-native
operations, compliance requirements evolve. So, therefore, should
the policies. It’s important to regularly review and update OPA
policies to reflect any changes in compliance standards, organi-
zational requirements, or application design.

CHAPTER 5 Implementing a Container Security Solution 33

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Understanding the need for container
security

»» Spotlighting the risks you must watch
out for

»» Pulling it all together with a security
solution

Implementing a
Container Security
Solution

You picked up this book seeking answers, not just a recita-
tion of how bad things are out there. This chapter is where
the answers start to really take shape. It spells out the need

for a container security solution, outlines the risks that such a
solution will need to be watching for, and lets you know what to
look for as you shop for a tool to handle container security and
Kubernetes security posture management.

Seeing How Container Security
Is Essential

Cloud Native Computing Foundation surveys have found that the
vast, vast majority of organizations are using Kubernetes or eval-
uating it for their application deployments. More than 5 million
developers are said to be in the business of developing solutions

34 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

involving Kubernetes. It’s pretty much everywhere — but is all
this activity happening in the most secure manner possible? Good
question.

The business value of containers is abundantly clear. Here are
some of the security challenges that containers pose:

»» Visibility may be completely lacking: If visibility isn’t
sufficient, there’s no good way to get an understanding of
the containerized environment. It’s an incredibly complex
world out there regarding the configuration of container
orchestration and cloud environments. Within the multi-step
process are potential “toxic combinations” of individual risk
factors that together open an attack path to critical
resources.

»» The container itself may be vulnerable: Cloud-native
application development is powerful, but it’s nevertheless
like any other development approach in that it can allow
security vulnerabilities into the libraries and software
packages that are distributed in a container.

»» Scanning and monitoring are fragmented: A complex
environment means any vulnerability scanning and monitor-
ing tools may be siloed in a way that’s cloud-centric or
cluster-centric or configuration-centric. On one hand, that
siloed approach can totally miss key threats. On the other
hand, it can generate a huge volume of alerts, without any
good way to prioritize them.

Container flexibility, which of course is a key selling point, is
also a potential security problem. Containers can mount volumes
and directories, and they’re able to disable security features. If
a hacker gains control, containers can run under their control
as root in a “breakout” scenario, bypassing container isolation
mechanisms and grabbing additional privileges.

Most Kubernetes users take advantage of managed Kubernetes
services that cloud providers offer, but security in the cloud has
always had its own challenges. The more complex the environ-
ment, with new workloads and architectures and roles and users,
the harder it is to figure out which databases are exposed to the
internet.

Given all that, it’s hardly surprising that those CNCF surveys find
security to be the top challenge associated with containers. Every

CHAPTER 5 Implementing a Container Security Solution 35

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

business living in this world needs to prioritize container security
and figure out how to:

»» Identify vulnerabilities and misconfigurations

»» Determine the containers that are internet-facing

»» Get a handle on excessive permissions

»» Put a lid on exposed secrets

That’s how to proactively tackle container risk and shut down
potential attack paths.

Determining Container Security Needs
So, enough with the bad news. This book would be a real downer
if we just documented all of the problems without giving a hint
to any solutions. The good news is that there are solutions to the
complex question of container security. There are, indeed, tools
that help your organization get a handle on this horror story.

As you peruse the possibilities, be sure that any tool you select is
able to help you easily address the following key container secu-
rity risks.

Finding container image vulnerabilities
One of the most common container risks is image vulnerabilities.
That may be because of an insecure library or imported depen-
dency, or it may reflect a threat that found its way in through a
breach in the development environment.

It’s crucial to keep such vulnerabilities from being introduced into
the live environment. For that reason, a container risk solution
must be able to scan images before they’re used to create individ-
ual containers.

Spotting vulnerabilities in
third-party libraries
One of the many benefits of apps built from microservices is that
your developers don’t have to reinvent every wheel. They can save
tremendous amounts of time and effort by tapping into existing
resources, including third-party libraries.

36 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

That said, every different source of code is a potential source of
trouble. A lot of the third-party libraries out there run the risk of
introducing bugs and other security vulnerabilities into the con-
tainer environment. And with a complex cloud environment that
crosses multiple platforms, diverse architectures, and thousands
of different applications, it’s all too easy to miss such vulner-
abilities. Your container security solution must have visibility into
this possibility.

Mixing up new misconfigurations
The interplay between host, cloud, container, and Kubernetes
cluster is another source of potential trouble. You’ve got overlap-
ping layers of configurations, networks, and identities all across
the distributed cloud-native technology stack.

That’s a pretty clear recipe for errors and security gaps such as
accidentally exposing internal services. Your container security
solution must offer a clear understanding of how all of these ele-
ments are connected to each other, to the corporate network, as
well as to the internet. That’s the only way to spot these inad-
vertent risks.

Going overboard with container
privileges
Development teams need access to resources on the host, which is
why they need privileged containers. But what if those privileged
containers are breached? That can give a malicious actor those
same generous privileges.

That’s why a contained security solution must always be on the
lookout for excessive privileges. If you’re really going to success-
fully keep attackers from abusing root access in order to find and
exploit vulnerabilities, you really need to limit and monitor con-
tainer privileges as much as you can. Don’t be handing out keys to
the kingdom, because they might fall into the wrong hands.

Stashing sensitive data in the
container writable layer
Each container has its own writable layer, which is where it stores
such changes as the addition or modification of data. But if some-
one gains illicit or unauthorized access to the container, they’ll

CHAPTER 5 Implementing a Container Security Solution 37

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

be able to make changes and additions of their own, which means
they could potentially find any secrets or other sensitive data that
are being stored within the layer.

A container security solution must be able to scan the writable
layer. It’s the only way to be certain there isn’t any sensitive data
stored there, exposed to risk.

Painting the Big Picture
It would be simple enough to use the preceding section as a
checklist for picking a container security solution, and you cer-
tainly need your solution to watch for all of these risks. But many
tools still have shortcomings that you need to be aware of.

For example, a lot of traditional tools work by installing an
agent on the running resource. That’s an approach that a lot of
developers don’t particularly like, as they see agents as a possible
source of instability or performance reduction. Not to mention,
agents on the running resource might have blind spots. A better
approach would be API-based, which can get the job done in a
cloud-native way.

Also, if security tools are siloed, they won’t be able to truly corre-
late the three main types of risk: the container, Kubernetes, and
the cloud. Without a big-picture view of that, security teams will
lack the insight they need to prioritize risks and problems.

The only way to get a full understanding is with visibility into how
the systems and resources are configured, how they connect to
both the network and the internet, which identities have access,
and which permissions have been given to those identities.

And here’s a biggie: Many tools focus on production without pay-
ing attention to development. They miss key parts of the lifecycle
and the continuous integration/continuous development (CI/CD)
pipeline.

If a solution is only scanning a cloud-native app after it’s been
built, that makes security reactive. Spot a problem and you have
to stop deployment, and isn’t the whole point to enable safe
deployment? The key to being an enabler rather than a stop sign
comes from shift-left thinking, with security and development
teams working together to reduce risks throughout the pipeline.

38 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

All that said, if security is going to be invited to the table through-
out the feast, it can’t get in the way and undermine the veloc-
ity and agility that your organization is seeking. Developers need
to maintain their speed while they innovate, with well-defined
security guardrails.

The best bet is a single solution that handles container secu-
rity and Kubernetes security posture management (KSPM). This
one-stop-shop must have the capabilities for discovering and
scanning containers, hosts, and clusters, all across cloud-
managed and self-managed Kubernetes environments. That
includes serverless containers and stand-alone containers run-
ning on virtual machines.

Sounds complicated, but we can boil it down to three essential
functions you want in a container security/KSPM solution:

»» Enabling continuous visibility: The security team needs
instant visibility into what the environment looks like right
now. Developers are spinning up new clusters and work-
loads all the time, and security personnel need to be able
to keep track of this dynamic environment.

»» Providing context: The security team needs lots of informa-
tion, for sure, but they also need to be able to make sense
of it. There’s lots of noise and troublesome alerts from tools
that monitor workloads, entitlements, compliance, vulner-
abilities, and more. The container security/KSPM solution
must offer a clear understanding of the risks so that
responses can be properly prioritized.

»» Seeing every level: Container security isn’t enough. A
helpful solution must also consider the network, the
entitlements, and the cloud environment. Full context
is vital.

CHAPTER 6 Ten Kubernetes Security Best Practices 39

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

»» Minding your own store

»» Keeping everyone in their place

»» Solving issues as early as possible

»» Staying in compliance

Ten Kubernetes Security
Best Practices

If you’ve made it this far, you’ve got some solid ideas in mind
for Kubernetes security. If you like to read books from back to
front, you’re starting with the moral to the story. This chapter

rounds up ten of the best practices for Kubernetes security that
are detailed throughout this guide.

Sharing Responsibility
Managed Kubernetes services make implementing and running
container-based applications a whole lot easier, but don’t think
you’re off the hook for security. Under the shared responsibility
model, the cloud provider takes responsibility for the security of
the cloud, but users are accountable for the security of their appli-
cations and data.

Your organization must keep watch over your containerized
applications, which as you know are vulnerable to all kinds of
exploits and threats. Identity and access management are your
responsibility, along with all the various configurations, encryp-
tion, network traffic protection, segmentation, and other details.

40 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Strengthening the Foundation
A secure Kubernetes implementation begins with a solid founda-
tion, one that has a good handle on any infrastructure vulnera-
bilities or misconfigurations. Great preventive ideas in this regard
include such things as network segmentation, solid firewall rules,
and proper access controls.

To reduce attack vectors, harden and regularly patch the host
operating system on which Kubernetes runs. Keep up with
updates, follow security guidelines tied to the OS, remove extrane-
ous applications and libraries, and delete unneeded user accounts.

Keeping Images Safe
Container images must be free of vulnerabilities and malicious
code. You want a secure image registry, limits that ensure that
images come from trusted sources, and solid practices for build-
ing and signing images.

And, you need regular scanning. Images should be scanned in
registries before containers are ever deployed. If issues are dis-
covered there, they can be sent to the right owner.

Maintaining Isolation
Kubernetes is the dominant container orchestration solution, and
the whole point of containers is isolating various parts of the puz-
zle so they can be moved around as needed, scaled when appro-
priate, easily fixed when broken, and improved when desired.
They need to be orchestrated to work together, but they also need
to be well isolated from one another.

Isolation ensures that containers can’t access each other’s data or
processes, which is vital for security. Kubernetes also can allocate
resources such as CPU and memory to specific namespaces so that
no one hogs all the resources.

CHAPTER 6 Ten Kubernetes Security Best Practices 41

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Getting a Handle on Access
One of the first steps toward keeping anything secure —
information technology or your business office or your
sportscar — is ensuring that only the right people have access.
Kubernetes helps out with mechanisms for role-based access
control (RBAC). Your enterprise determines who can access and
modify resources within the cluster.

Indeed, you can use RBAC to secure individual namespaces so
that only members of a specific team have access to a particular
namespace. RBAC can even get more granular than that by limit-
ing permissions within a team. The whole point is, anyone who
has no business inside should stay outside, and the invitation list
should be as short as possible. (Check the next item for more on
that idea).

Ensuring That Privileges are Limited
This isn’t just a Kubernetes thing but is a smart practice with
any implementation. We’re talking about the concept called least
privilege. When you’re assigning roles and permissions with
RBAC, be sure you’re not overly generous. Any given person or
entity should have the absolute least amount of privilege needed
to get the job done. No access to other places, no permission to do
things outside of their job scope.

Ensuring that people aren’t accessing things that they should-
n’t be accessing is important for security. But it’s also important
for preventing accidental mayhem. For example, perhaps a user
should have permission to look at something but not change or
delete it.

Trusting No One
Along the same lines, the security concept of zero trust helps
minimize attack surfaces by putting extreme limits on access. The
idea is that no person or entity, whether internal or external, is
trusted by default. All communications must be authenticated and
authorized.

42 Kubernetes Security For Dummies, Wiz Special Edition

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Won’t that hurt somebody’s feelings, to feel downright untrusted?
Well, sorry about that. The reality is, it’s not necessarily that a
person is untrustworthy — but what happens if that person’s
credentials are compromised? If somebody is so trusted that they
have access to everything, and then a malicious actor gains access
to that person’s login, you’ve got a big problem.

Ensuring Early Warnings
Nobody wants bad news, but wouldn’t you rather hear it at a point
when you can do something about it? A key to Kubernetes security
is spotting problems as early as possible, preferably before it’s in
production, before it wreaks havoc.

If you can fix a misconfiguration early, you just may prevent an
attack. If you can minimize the damage, you can reduce the cost
of the impact and most likely also make the repair more cost-
efficient. But to get that early warning, you need full and con-
tinuous visibility into the whole lifecycle, with an emphasis on
getting your security processes rolling on the left side of the
development cycle.

Keeping Showtime Smooth
Shifting left, as mentioned in the previous section, is vital. But
so is keeping a close eye on operations once everything is in
production. Runtime container security requires agentless scan-
ning across the full stack. You want insights not just inside the
container but also across the cloud and workloads. To really
understand all risk, you need to know all potential paths to and
from the container. Even if you prevent all the risks, being able
to detect threats at runtime and correlate them with cloud events
helps SOC and IR teams make quick decisions in case of a breach.

As long as you’re scanning, keep scanning images of all running
containers and all workloads. And keep on scanning registries
that store container images, too.

CHAPTER 6 Ten Kubernetes Security Best Practices 43

These materials are © 2024 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Knowing Your Compliance Needs
Every organization has some set of rules with which it must com-
ply. Certain industries have a lot of stringent rules — healthcare
and financial services are two examples. And some geographic
locations are heavy on regulation.

Part of your Kubernetes security picture is ensuring that you’re
fully in compliance with all of those rules. And the first step in
that process is fully understanding which rules apply, so that
when you establish regular and automated compliance checks
you are monitoring everything you need to monitor.

http://wiz.io/demo

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Living in a Cloud-Native World
	Understanding the Cloud-Native Environment
	Running Cloud-Native Applications
	Seeing the Importance of Kubernetes

	Chapter 2 Securing Kubernetes
	Understanding Kubernetes Security
	Building a Secure Foundation
	Implementing Multitenancy

	Chapter 3 Securing Containers
	Exploring the Container Lifecycle
	Identifying Issues Early
	Scanning Images Regularly
	Protecting Runtime

	Chapter 4 Keeping Kubernetes Compliant
	Defining the Challenges
	Implementing Compliance Checks
	Building Controls

	Chapter 5 Implementing a Container Security Solution
	Seeing How Container Security Is Essential
	Determining Container Security Needs
	Finding container image vulnerabilities
	Spotting vulnerabilities in third-party libraries
	Mixing up new misconfigurations
	Going overboard with container privileges
	Stashing sensitive data in the container writable layer

	Painting the Big Picture

	Chapter 6 Ten Kubernetes Security Best Practices
	Sharing Responsibility
	Strengthening the Foundation
	Keeping Images Safe
	Maintaining Isolation
	Getting a Handle on Access
	Ensuring That Privileges are Limited
	Trusting No One
	Ensuring Early Warnings
	Keeping Showtime Smooth
	Knowing Your Compliance Needs

	EULA

iz

Kubernetes
Security

